Summary: The derivation of the CIE 1931 RGB color space from the Wright – Guild color matching data is described. Emphasis is placed on explaining the underlying logic of the process. The transformation of the RGB space to the CIE 1931 XYZ space is briefly described. An argument is made that the principal intent of the color matching experiments was to develop a rigorous, quantitative framework for describing all visible colors. For that purpose, negative chromaticity coefficients or imaginary primary colors are not problematic. Neither of the CIE 1931 color spaces can be displayed on a physical device; and it seems possible that little, if any, consideration was given in 1931 to practical applications of that sort. In general, digital cameras are sensitive to all visible wavelengths, and in principal can encode all humanly visible colors in raw image files. Color spaces with gamuts that exceed the AdobeRGB gamut — currently about the widest that can be reproduced on specialized displays — may be useful for processing raw images. A wide-gamut space such as ProPhotoRGB will, in theory, minimize compression of image color information during editing; thus maximizing head-room for color adjustment. Archived raw image files may also be useful in the future if very-wide gamut displays — possibly using 4, 5, or 6 primary colors — become available.
Key words: RGB color, chromaticity, W. D. Wright, J. Guild, color matching experiment, color matching function, tristimulus value, colorimetry, CIE 1931 XYZ color space, CIE 1931 RGB color space, spectral locus, imaginary color, N.P.L. Standard White Light