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Introduction
 Camera movement and vibration, subject movement, lens aberrations, defocus, and 
diffraction can all contribute to blur in photographic images.  The subject of this paper is defocus 
and diffraction, and their combined effects.  Defocus blur decreases with smaller apertures.1  On 
the other hand, diffraction blur increases with smaller apertures.  Because defocus and diffraction 
blurs respond in opposite directions to changes in aperture, there can be an optimal setting that 
minimizes their combined effect.  The purpose of this paper is to develop the concept of optimal 
aperture in photographic applications, and to provide formulas for its determination.  This 
treatment is an expansion of the work of Peterson2 and Hansma3; and the immediate inspiration 
for the present analysis was provided by several iOS apps developed by George Douvos.4  In 
particular, my goal has been to make the mathematics behind optimal aperture calculations 
explicit, and to extend the analysis to consideration of camera format (sensor size).

1.  Blur
 1.1  Total Blur
 Peterson and Hansma suggest that the combined effects of defocus and diffraction can be 
calculated by the following formula:

     ct = cd
2 + ca

2
    1(a)

where cd is defocus blur, ca is blur due to diffraction, and ct is total blur (disregarding other 
sources such as lens aberrations).  Equivalently,

     ct
2 = cd

2 + ca
2

     1(b)
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1  “Smaller” in relation to aperture means a smaller opening in the aperture diaphragm, which corresponds 
to a larger f-value:  f/11 is a smaller aperture than f/4.  Similarly, a “larger” aperture means a smaller 
numerical f-value.

2  Peterson, Stephen.  Image sharpness and focusing the view camera.  Photo Techniques, March/April 
1996:51-53.

3  Hansma, Paul K.  View camera focusing in practice.  Photo Techniques, March/April 1996:54-57.

4  You are strongly encouraged to visit the web site of George Douvos and to investigate his iOS apps:  
including OptimumCS-Pro, TrueDoF-Pro, and FocusStacker.  The documentation for these apps covers 
much of the same material as this paper, and the apps perform most of the calculations that are 
described here.  http://www.georgedouvos.com/douvos/
George_Douvos__Innovative_Apps_for_Apple_Mobile_Devices.html
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 1.2  Defocus Blur
 There are several possible formulas for defocus blur.  Standard treatments of depth of 
field give the following two equations:

     
cd (n) =

f (vn − v)
Nvn

= f ∂vn
Nvn     2

and

     
cd ( f ) =

f (v − vf )
Nvf

=
f ∂vf
Nvf     3

where f is lens focal length and N is aperture number.  v is the distance, behind the lens, of the 
image of an in-focus object that is at distance u from the camera.  vn is the (hypothetical) distance 
behind the lens of the image of a foreground object at distance un from the camera; and vf is the 
distance behind the lens of the image of a background object at distance uf from the camera.  cd(n) 
is the diameter of the blur circle of an infinitesimal point on the foreground object; and cd(f) is the 
blur circle for the background object.  In the usual treatment of depth of field, DoF limits are 
computed for the case in which cd(n) = cd(f), and the “n” and “f” subscripts are omitted (as is the 
“d” subscript).  ∂vn (“delta-vee sub-en”) is simply (vn - v), and ∂vf is (v - vf).  In the case of 
conventional cameras, v, vn, and vf must be estimated from object distances by means of the 
standard lens equation:

     

1
f
= 1
u
+ 1
v

As a numerical example, suppose that we are using a 50 mm lens to focus on an object that is u = 
5.7 m from the camera.  Then, vn for a foreground object at un = 4.0 m (= 4,000 mm) is given by:

    

1
vn

= 1
f
− 1
un

= 1
50

− 1
4000

= 0.01975

from which vn = 50.633 mm.  Similar calculations give v = 50.442 mm.  Then, from Eq. 2, if 
aperture N is 5.6, cd(n) = 0.03368 mm = 33.68 µm.

 Peterson derived a third formula for defocus blur:

     
cd (P ) =

∂v
2N      4

© 2013 Phil Service (pservice@mac.com)! Last revised:  7 May 2014

2

mailto:pservice@mac.com
mailto:pservice@mac.com


where N is aperture, as before, and ∂v (without subscript) is the focus spread, defined as vn - vf.  
Peterson’s analysis of defocus blur considers the case where the goal is to jointly minimize blur 
on two objects at different distances from the camera.  In this case, Hansma states that for most 
purposes the focus distance can be obtained by setting v = (vn + vf)/2.  (The exception is when the 
ratio of distances of near and far objects is much different than one.)  If v = (vn + vf)/2, then ∂vn = 
∂vf = ∂v/2.  If we substitute for ∂vn in Eq. 2, we get:

     
cd (n) =

f ∂v
2Nvn

This is similar to Peterson’s equation (Eq. 4), but with the added term (f / vn).  If the foreground 
object distance, un, is equal to 20 times the lens focal length, then (f / vn) = 0.95, and becomes 
closer to 1.0 as the foreground object distance increases.  In most cases, then, the approximation 
incurred by omitting the (f / vn) term is reasonable.  Similar considerations apply to substitution 
of ∂v/2 for ∂vf in Eq. 3.  The result is that Eq. 2, 3 and 4 are equivalent ways of calculating 
defocus blur.5  When the particular expression for defocus blur is unimportant, I will use “cd” 
without subscript.

 1.3  Diffraction Blur
 The diffraction blur spot diameter is:

     
ca =

2.44αλN
k      5

where λ is the wavelength of light in nanometers (usually taken to be about 550 nm), N is the 
aperture, and k is a scaling factor whose value depends on the units that ca is to be expressed in.6  
The parameter α is the diffraction blur coefficient.  It is omitted in other treatments of diffraction 
blur that can be found in the literature.  Effectively, it is assumed to equal one, if it is considered 
at all.  If α = 1.0, then Eq. 5 is the diameter (to the first minimum) of the central bright disk of the 
Airy diffraction pattern.  For purposes of example calculations in this paper, I will use α = 1.0.  
The next paper in this series will describe an experiment that estimates its actual value for a 
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5  Before leaving the subject of defocus blur, it is worth noting that the Peterson — Hansma analysis 
assumes that a view camera is being used.  In that case, it is possible to read vn and vf directly from a 
scale on the camera rail.  That makes it unnecessary to use the lens equation to calculate image 
distances (and ∂v) from object distances.

6  Differences in customary units of length lead to confusion.  For example, lens focal length is usually 
expressed in millimeters, wavelength in nanometers, blur spots (circles of confusion) in millimeters or 
microns, and so on.  For the present calculations, it is crucial that ca and cd be expressed in the same 
units.  The scaling factor, k, is the ratio of the scales used for blur spots and wavelength.  For example if 
blur spots are expressed in microns (10-6 m) and wavelength is in nanometers (10-9 m), k = 10-6 / 10-9 = 
103.  On the other hand, if blur spots are expressed in millimeters and wavelength in nanometers, k = 106.
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specific lens and camera.  To illustrate calculation of diffraction blur, if the aperture, N = 5.6, and 
λ = 550 nm, then ca = 7.52 µm.  (In this case k = 1000 in order to express ca in microns.)

 1.4 Total Blur - Example
 We can combine the values of cd and ca from the examples in Sections 1.2 and 1.3 to obtain 

total blur.  By Eq. 1(a), the total blur, ct = (33.68)2 + (7.52)2  = 34.51 µm.  In this case, the 
diffraction blur is much smaller than the defocus blur and contributes almost nothing to the total 
blur.  That result immediately suggests that the total blur for the images of foreground and 
background objects could be reduced by decreasing the aperture: if, by doing so, defocus blur 
decreases faster than diffraction blur increases.  We will return to this example below.

2.  Optimal Aperture
 I suggest two definitions of optimal aperture.  The first assumes that maximizing the 
sharpness of objects at different known distances from the camera is of primary importance.  The 
optimal aperture is then the one that minimizes the total blur of those necessarily defocused 
subjects.  The second definition assumes that the primary consideration is control of total on-
sensor (or film) blur at some predetermined value.  The optimal aperture is then the one that 
maximizes “depth of field” for that amount of total blur.  These are two different optimization 
problems:  the first minimizes blur (maximizes sharpness) for a given separation between 
objects; the second maximizes the distance between sharp planes in the object field in the case 
where “sharp” is predetermined.  A third definition of optimal aperture might be the aperture that 
minimizes the hyperfocal distance.  As will be shown below, the third definition is equivalent to 
the second.
 Given that we have three equations for defocus blur, we have three possible expressions 
for total blur.  To illustrate the derivation of optimal aperture, I will use Eq. 4 for defocus blur.  
Derivations using Eq. 2 and 3 can be found in the Appendix.  Substituting Eq. 4 and 5 into Eq. 
1(b), we have:

     
ct
2 = (∂v)

2

4N 2 + 2.44αλ
k

⎛
⎝⎜

⎞
⎠⎟
2

N 2

   6

It is worth noting at this point that lens focal length and camera format (sensor size) do not 
directly enter into the calculation of total blur, nor, as we will see below, the calculation of 
optimal aperture.  Camera format can affect our results indirectly, however, in several ways.  For 
example, sensor size may influence the choice of lens focal length which, in turn, will affect vn 
and vf (and ∂v and cd).
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 2.1  Maximum Sharpness (Minimum Total Blur) of Near and Far Objects
 In this case, ∂v is fixed (because un and uf are fixed) and aperture, N, is thus the only 
variable on the right-hand-side of Eq. 6.  The required optimization is accomplished by 
differentiating ct2 with respect to N, then setting the derivative to zero and solving for N.

    

dct
2

dN
= −0.5N −3(∂v)2 + 2 2.44αλ

k
⎛
⎝⎜

⎞
⎠⎟
2

N
   

If dct2/dN = 0, then:

    
0.5N −3(∂v)2 = 2 2.44αλ

k
⎛
⎝⎜

⎞
⎠⎟
2

N
    

From which:

     
Nmin(Blur ) =

∂v( )k
4.88αλ     7

As previously noted, this optimum aperture is indeed independent of camera format (sensor size) 
and lens focal length (except in so far as focal length will affect the focus spread, ∂v).7
 Let’ s return to the example that was introduced in Section 1.2, with the added 
requirement that we want to jointly minimize the blur of objects at 4 and 10 m from the camera.  
In addition to vn = 50.633 mm, which was calculated previously, we need vf = 50.251 mm (from 
the lens equation and uf = 10 m).  Then ∂v = 0.382 mm = 382 µm, and

    
Nmin(Blur ) =

382 ×103

4.88 × 550
= 11.93

    

The nearest in-camera aperture that we could actually set would probably be f/11.  Taking N = 11 
for our aperture, cd(P) = 17.35 µm, and ca = 14.76 µm by Eq. 4 and 5; and ct = 22.78 µm by Eq. 1.  
If we had chosen to use f/13 instead, the blurs would have been 14.68, 17.45, and 22.80 µm, 
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7  I have chosen the subscript “min(Blur)” for this optimal aperture to indicate that the optimization was 
achieved by minimizing total blur.  Eq. 7 is equivalent to Hansma’s formula for optimum aperture, N = 
√(375 ∂v), where ∂v is expressed in mm (so k = 106), λ = 546 nm, and α = 1.0.
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respectively.8  The difference in total blur between f/11 and f/13 is negligible, and either of these 
two apertures is optimal in this case: larger or smaller apertures will produce greater total blur.9  
Note the difference between this result and that obtained by conventional treatments of depth of 
field.  In conventional treatments, sharpness of foreground and background objects always 
increases with smaller apertures.  In our analysis, however, decreasing aperture beyond Nmin(Blur) 
will not improve image sharpness because the decrease in defocus blur that will be achieved will 
be more than offset by an increase in diffraction blur.
 It is important to emphasize that this procedure does not necessarily ensure that the near 
and far objects will be sufficiently sharp; only that they are as sharp as can be made given their 
distances from the camera and the focal length of the lens being used.  Whether they are 
sufficiently sharp will depend on the criterion of sharpness employed, and on the final image size 
and viewing distance.  Greater sharpness can be obtained by using a lens of shorter focal length 
or by moving the camera farther from the objects.  Both alternatives decrease the image sizes of 
the objects, and the latter also alters their relative sizes (perspective).

 2.2  Maximum Depth of Field for Specified Total Blur
 In this case, ct is fixed and the optimization problem requires maximizing ∂v, which is 
equivalent to maximizing “depth of field” (uf - un).  First, rearrange Eq. 6 to solve for (∂v)2:

    

∂v( )2
4N 2 = ct

2 − 2.44αλ
k

⎛
⎝⎜

⎞
⎠⎟
2

N 2

    
∂v( )2 = 4ct2N 2 − 4 2.44αλ

k
⎛
⎝⎜

⎞
⎠⎟
2

N 4

Then differentiate (∂v)2 with respect to N and set the derivative to zero in order to find the value 
of N that maximizes (∂v)2.

    

d ∂v( )2
dN

= 8ct
2N −16 2.44αλ

k
⎛
⎝⎜

⎞
⎠⎟
2

N 3
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8  The similarity in magnitudes of cd and ca is not accidental.  In fact, if we could actually have set the 
camera aperture to N = 11.93, cd and ca would have been equal.  Given the way in which defocus and 
diffraction blurs are combined to produce total blur [Eq. 1(a)], it can be proved that they will be equal 
whenever total blur is minimized.  (That said, ct(min) = 2.0 is a special case, unlikely to be encountered in 
practice, that allows cd ≠ ca.)

9  In Sec. 1.4, we calculated ct = 34.51 µm when N = 5.6.
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Setting this derivative to zero:

    
8ct

2N = 16 2.44αλ
k

⎛
⎝⎜

⎞
⎠⎟
2

N 3

From which:

    
Nmax(DoF ) = 0.5 ctk

2.44αλ
= 0.29 ctk

αλ    8

Once again, the optimal aperture is independent of focal length and camera format (sensor size), 
although camera format may influence the degree of image magnification for final display and 
thus potentially affect the value chosen for ct.10

 As a numerical example, suppose our criterion for acceptable sharpness is a total blur 
circle diameter of 15 µm.  If λ = 550 nm, then Nmax(DoF) = 7.91 ≈ 8.  For N = 8, diffraction blur is 
10.7 µm (Eq. 5) and defocus blur must be 10.5 µm in order to satisfy the constraint that total blur 
is 15 µm.11  The actual depth of field limits with an aperture of f/8 will depend on the lens focal 
length and the distance to which it is focused, and are determined using only the defocus 
component of total blur.  Let us return to the example just discussed in Section 2.1.  In order to 
jointly minimize blur on the near and far objects in that example, the focus distance should have 
been 5.7 m.12  At f/8, with a 50 mm lens focused at 5.7 m and an acceptable defocus circle of 
10.5 µm, the near and far limits of the depth of field are 4.8 and 7.1 m.13  Consistent with our 
earlier analysis (Sec. 2.1), it is not possible to have subjects at 4 and 10 m from the camera 
simultaneously acceptably sharp with a 50 mm lens, if our criterion of acceptable sharpness is a 
total blur of 15 µm.  As we saw previously, the best that we could obtain with this setup was a 
total subject blur of 22.8 µm.  Fig. 1 shows how depth of field varies with aperture when total 
blur is constrained.  Note that depth of field falls to zero when all of the available total blur is 
taken up by diffraction, leaving nothing for defocus blur.
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10  I have chosen the subscript “max(DoF)” for this optimal aperture because the optimization maximizes 
depth of field for a specified total blur at the near and far depth of field limits.  Again, the value of the 
scaling constant, k, depends on the ratio of the units used for ct and λ (see footnote 6).

11 If N = 7.91, ca = 10.6 µm, by Eq. 5.  Then, by Eq. 1, cd = √(ct 2 - ca 2) = √(225 - 112.8) = 10.6 µm.  This is 
a second example of the rule that optimal aperture, either Nmax(DoF) or Nmin(Blur), is obtained when defocus 
and diffraction blurs are equal (see also footnote 8).

12  Obtained by setting v = (vf + vn)/2 = 50.444 mm, and using the lens equation to solve for u.

13  The near and far depth of field limits are computed with the usual formulas:  Dnear ≈ Hs / (H + s), and 
Dfar ≈ Hs / (H - s) for s < H, where s = subject distance and H is hyperfocal distance.  The hyperfocal 
distance is also calculated in the usual way except that the circle of confusion parameter now refers 
specifically to defocus blur:  H ≈ f 2 / Ncd , where f is focal length and N is aperture.
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 2.3 Minimum Hyperfocal Distance
 Minimum hyperfocal distance is desirable because it increases depth of field — in the 
sense that the nearest part of the object field that will be acceptably sharp will be closer to the 
camera when focused at the hyperfocal distance.  In conventional treatments that consider only 
defocus blur, hyperfocal distance decreases with smaller apertures.  However, as we know, 
decreasing aperture increases diffraction blur.  Therefore, for a given amount of acceptable total 
blur, there must be an optimal aperture that will minimize the hyperfocal distance.  This optimum 
is Nmax(DoF) (Eq. 8).  This result follows from the fact that minimizing hyperfocal distance is 
simply a specific instance of maximizing the focus spread, ∂v.  The hyperfocal distance is the 
focus distance at which objects at infinity are acceptably sharp.  For objects at uf = ∞, vf = f (the 
focal length).  Maximizing focus spread then amounts to maximizing vn (or, equivalently, 
minimizing un and H).
 Consider the case where our acceptable total blur is 20 µm.  From Eq. 8, the optimal 
aperture is N = 10.5 ≈ f/11 (assuming λ = 550 nm).  From Eq. 5, when N = 11, diffraction blur is 
14.8 µm.  This leaves √(202 - 14.82) = 13.5 µm for defocus blur, cd.  The hyperfocal distance is 
then 16.8 m, by the following equation:

Fig. 1.  Depth of field vs. aperture for different values of acceptable total blur.  35 mm lens with subject 
distance = 5 meters.  Note that depth of field falls to zero when all of the available total blur is taken up by 
diffraction, leaving nothing for defocus blur.
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H = f 2

Ncd

where, as previously, f is focal length (50 mm) and N is aperture.  Essentially identical results are 
obtained by setting aperture to f/10.  To see that we cannot decrease the hyperfocal distance 
further by decreasing the aperture, to say f/13, while maintaining an acceptable total blur of 20 
µm, consider the following.  At f/13, diffraction blur is 17.4 µm.  That leaves 9.9 µm for defocus 
blur, and the hyperfocal distance, by the above equation, would be 19.4 m.  This is a substantial 
penalty to pay for a 1/3 stop change in aperture:  the acceptably sharp near object-field plane 
recedes from 8.4 m to 9.7 m from the camera.  Fig. 2 illustrates how hyperfocal distance depends 
on aperture and total blur.
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Fig. 2.  Hyperfocal distance vs. aperture for different values of acceptable total blur.  35 mm lens.  See 
text (Section 3) for additional discussion.
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3.  Choosing a Value for Acceptable Total Blur
 We now know how to maximize depth of field, given a specified total blur; and also how 
to determine if subjects at different distances from the camera will be imaged with sufficient 
sharpness.  The question then is:  how do we decide on a value for acceptable total blur?  I am 
interested in producing high quality prints.  Suppose I intend to make prints with a maximum 
dimension of 20 inches (50.8 cm).  If I am using an APS-C format camera, the maximum 
dimension of the sensor will be about 24 mm.  The image magnification of the print is therefore 
about 21-fold.  Let’s further suppose that I want the smallest discernible object on the print to be 
0.2 mm — corresponding to one line-pair printed at 5 lp/mm — when the print is scrutinized 
closely.  A 0.2 mm blur circle on the print would then correspond to a 9.45 µm blur spot on the 
sensor.14  By Eq. 8, the optimal aperture would be almost exactly f/5.  If an on-sensor blur spot of 
9.45 µm seems overly stringent, consider that for a 24MP APS-C sensor, the pixel pitch will be 
about 4 µm.  Thus a 9.45 µm blur spot is more than twice the sensor pixel pitch, and objects at 
the depth of field limits set by that blur spot will be perceptibly less sharp than objects in the 
plane of focus.  I typically shoot in aperture-priority mode with the default aperture set to f/5 or 
f/5.6.  However, I will change the aperture as needed.  For example, if I want to minimize depth 
of field, or I need a different shutter speed, or it’s more important to have a low ISO, or if corner 
sharpness is important and can be significantly improved with a smaller aperture.
 A second approach to choosing a total blur spot diameter is to base it on the photosite size 
of the sensor.  If we consider for a moment just the part of the image that corresponds to the 
object-field plane of focus, then the only source of blur is diffraction (assuming that lens 
aberrations are fully corrected).  For me, careful examination of images made under controlled 
conditions suggests that the effects of diffraction become just perceptible in unsharpened images 
when the diffraction blur spot is about equal to the pixel pitch.  Initially, the effect is to reduce 
detail contrast very slightly, although resolution per se is not affected.  So, if you want the 
objects at your depth of field limits to be nearly as sharp as the objects in the plane of focus, set 
your total blur to between 1x and 2x the sensor pixel pitch.  In the case of the 24MP APS-C 
sensor mentioned in the previous paragraph, the total blur spot diameter should be 8 µm (or less), 
which corresponds to an optimal aperture of f/4.2 (f/4 or f/4.5 given available camera settings).15

 One aspect of specifying acceptable total blur is that it sets a limit on the smallest 
permissible aperture.  As aperture is decreased, diffraction blur increases.  At some point the 
diffraction blur alone will exceed the specified total blur, as which point nothing is left for 
defocus blur, hyperfocal distance becomes undefined, and there is no depth of field — that is, no 
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14  The “standard” treatment of depth of field assumes enlargement to 8 x 10 inches, a viewing distance of 
25 cm, and visual acuity of about 5 lp/mm at that viewing distance.  The difference between my 
requirements and the standard treatment is that I assume that 20-inch prints will be viewed as closely as 
8 x 10’s.  Therefore, I am not willing to tolerate a larger on-sensor blur on the assumption that my 20-inch 
prints will be viewed from some distance greater than 25 cm.

15  It is fortunate in regard to this discussion of total blur and optimal aperture that many, if not most, 
lenses perform best in the range of f/4 to f/5.6, at least in the image center.  At larger apertures, image 
quality is typically degraded by uncorrected lens aberrations.  And at smaller apertures diffraction will limit 
sharpness and resolution, although the onset of diffraction effects will depend on sensor photosite size; 
and for sensors with larger photosites, smaller apertures may be optimal.
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part of the object field is acceptably sharp (Fig. 1).  In the example of Section 2.3, at f/14 the 
diffraction blur, ca, is 18.8 µm (out of 20 µm total).  In fact, f/14 is the smallest usable aperture, 
at which setting the hyperfocal distance has increased to 26 m.  Also, it should be noted that the 
smallest usable aperture is independent of lens focal length and sensor size because diffraction 
blur depends only on aperture and wavelength, (Eq. 5).  The right-hand ends of the curves in Fig. 
2 indicate the minimum permissible apertures.  As can be seen, small total blur places severe 
limits on the range of usable apertures.  The minimum permissible aperture for any acceptable 
total blur can be calculated from Eq. 5 by setting ca equal to total blur and rearranging to solve 
for N.  In the present example, the minimum aperture would be f/14.9 (≈ f/14).
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 3.1  The Effect of Wavelength
 The wavelength of light affects our calculations of optimal aperture through its effect on 
diffraction blur.  For the examples in this paper, I have chosen 550 nm as the value for 
wavelength.  The choice is somewhat arbitrary.  The visible spectrum for humans is about 390 to 
700 nm.  Values between about 500 and 550 nm, corresponding to the green portion of the 
spectrum, are generally chosen for calculation of diffraction effects.  That choice is justified 
largely by the fact the such wavelengths fall approximately in the middle of the visible spectrum.  
The difference in optimal apertures, Nmax(DoF), between λ = 500 nm and λ = 550 nm is slightly 

Fig. 3.  Optimal aperture (Eq. 8) as a function of total blur for different wavelengths.
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less than 1/3 stop — a probably insignificant effect.  However, optimal apertures calculated for λ 
= 650 nm are more than one full f-stop larger than those for λ = 450 nm (Fig. 3).  So, for 
photography at “non-standard” wavelengths, infrared for example, it would be advisable to make 
appropriate adjustments for calculations of optimal aperture.

4.  Optimal Aperture and Camera Equivalence
 Results obtained with optimal apertures agree exactly with expectations based on 
established principles of camera equivalence.  To illustrate, consider the 24MP APS-C format 
camera discussed in Section 3.  Let us compare it to a 24MP “full-frame” camera, so that we are 
dealing with a sensor-size “crop factor” of 1.5x.  If the APS-C camera has a 50 mm lens, then a 
75 mm lens will provide an equivalent field of view with the full-frame camera.  We also know 
from camera equivalence theory that the two cameras will have the same depth of field when the 
f-number of the full-frame camera is 1.5 times the f-number of the APS-C camera (i.e., the 
aperture on the full-frame camera is approximately 1-stop smaller than on the APS-C camera).

Table 1.  Camera Equivalence When Optimal Aperture is Nmax(DoF) *Table 1.  Camera Equivalence When Optimal Aperture is Nmax(DoF) *Table 1.  Camera Equivalence When Optimal Aperture is Nmax(DoF) *

APS-C Full-frame

Millions of pixels 24 (6000 x 4000) 24 (6000 x 4000)

Sensor dimensions (mm) 24 x 16 36 x 24

Sensor pixel pitch (µm) 4 6

Lens focal length (mm) 50 75

Horizontal field of view (º) 27 27

Final print length (inches @ ppi) 20 @ 300 ppi 20 @ 300 ppi

On-print blur spot size (mm) 0.2 0.2

Print magnification 21.167 14.111

Total on-sensor blur, ct (µm) 9.449 14.173

Optimal aperture, Nmax(DoF) 4.982 7.473

Diffraction blur, ca (µm) 6.686 10.029

Defocus blur, cd (µm) 6.686 10.029

Hyperfocal distance (m)** 75.1 75.1

* Calculations assume λ= 550 nm
** Because hyperfocal distances are the same when both cameras are used at their optimal apertures, depth of 
field will also be the same (Fig. 4).

* Calculations assume λ= 550 nm
** Because hyperfocal distances are the same when both cameras are used at their optimal apertures, depth of 
field will also be the same (Fig. 4).

* Calculations assume λ= 550 nm
** Because hyperfocal distances are the same when both cameras are used at their optimal apertures, depth of 
field will also be the same (Fig. 4).
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In this comparison, assume again, that our goal is to make 20-inch prints with an acceptable blur 
spot diameter of 0.2 mm (as in the discussion above in Section 3).  The optimal apertures and 
equivalence results are shown in Table 1.  Note that the f-number for the optimal aperture with 
the full-frame camera is 1.5 times the optimal f-number for the APS-C camera.  In other words, 
the ratio of optimal apertures is the same as the “crop factor”.  Consistent, then, with camera 
equivalence theory, we see that the two cameras have identical hyperfocal distances and depths 
of field when used at their optimal apertures.
 To reinforce this point, let us return to the problem of simultaneously minimizing the blur 
of two subjects at different distances from the camera.  Suppose that in the example discussed in 
Section 2.1, we were using an APS-C format camera.  The equivalent full-frame camera would 
have a 75 mm lens.  The results are presented in Table 2.  Once again, optimal apertures obey the 
“rules” of camera equivalence.  In particular, the optimal f-value for the full-frame camera is 1.5 
times the value for the APS-C camera.  The total blur spots also differ by a factor of 1.5.  
However, blur spots as ratios of pixel pitches are the same, as are the sizes of blur spots on 20-
inch prints.
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 Which format is better?  Unless shallow depth of field is the goal, these comparisons 
suggest a possible advantage of the APS-C format over full-frame.  Specifically, the smaller 
sensor has a 1-stop greater light-gathering capacity when both cameras are used at their optimum 
apertures.  Either a slower shutter speed or higher ISO must be used with the full-frame sensor in 
order to match exposure value.  On the other hand, all other things being equal, we expect the 
larger sensor to have better noise characteristics than the smaller one, so the need to use a higher 
ISO (assuming equal shutter speeds) might not be a noticeable penalty.  Furthermore, any 
argument in favor of the APS-C camera assumes that the resolving power of the sensor + lens

Fig. 4.  Hyperfocal distance and depth of field as functions of aperture for equivalent cameras.  Blue line, 
APS-C; red line, full-frame.  Camera and lens descriptions, and total on-sensor blur spot diameters are 
given in Table 1.  Depth of field is calculated for a subject at 5 meters.  Note the superior depth of field for 
the APS-C camera at apertures larger than about f/5.6.
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Table 2.  Camera Equivalence When Optimal Aperture is Nmin(Blur) *Table 2.  Camera Equivalence When Optimal Aperture is Nmin(Blur) *Table 2.  Camera Equivalence When Optimal Aperture is Nmin(Blur) *

APS-C Full-frame

Millions of pixels 24 (6000 x 4000) 24 (6000 x 4000)

Sensor dimensions (mm) 24 x 16 36 x 24

Sensor pixel pitch (µm) 4 6

Lens focal length (mm) 50 75

Subject distances: un, uf (m) 4, 10 4, 10

Image distances: vn, vf (mm) 50.6329, 50.2513 76.4331, 75.5668

Focus spread, ∂v (µm) 381.6 866.3

Optimal aperture, Nmin(Blur) 11.92 17.97

Focus distance (m) 5.7 5.7

Diffraction blur, ca (µm) 16.0 24.1

Defocus blur, cd (µm) 16.0 24.1

Total blur, ct (µm) 22.6 34.1

Total blur / pixel pitch 5.7 5.7

Total blur spot size for near and far 
subjects on 20 inch print (mm)

0.48 0.48

* Calculations assume λ= 550 nm* Calculations assume λ= 550 nm* Calculations assume λ= 550 nm

combinations are equivalent.  For the APS-C format, a 5 lp/mm on-print resolution would require 
106 lp/mm resolution on the sensor.  The equivalent full-frame resolution would be 71 lp/mm.  
So, the choice between formats for equivalent cameras might well be decided by the quality of 
available lenses — or lens + sensor combinations.16

5.  Optimal Aperture and Non-equivalent Cameras
 What happens if we apply optimal aperture theory to non-equivalent cameras?  Given the 
availability of 36 MP full-frame cameras (as of late 2013), how would a 36 MP full-frame 
camera compare to a 24 MP APS-C format camera when both are used at their optimal 
apertures?  Table 3 considers the case where the extra resolution of the full-frame sensor enables 
printing at a larger size while still maintaining a print resolution of 300 ppi.  Table 4 illustrates 
what happens when the the two cameras are used to print at the same size, but the greater 
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resolution of the full-frame camera is used to achieve a smaller on-print blur spot (0.163 mm 
instead of 0.2 mm).  Note that the optimal aperture for the full-frame camera is the same in both 
cases.  The clear message of these comparisons is that the APS-C camera has a distinct depth of 
field advantage when both cameras are used at their optimal apertures — compare hyperfocal 
distances.  In fact, this depth of field advantage extends to all apertures permissible for both 
cameras (data not shown).  In effect, the greater print size (at equal resolution and sharpness), or

Table 3.  Camera Non-Equivalence When Optimal Aperture is Nmax(DoF) —
Constant Print Resolution and Constant Print Blur Spot Size*

Table 3.  Camera Non-Equivalence When Optimal Aperture is Nmax(DoF) —
Constant Print Resolution and Constant Print Blur Spot Size*

Table 3.  Camera Non-Equivalence When Optimal Aperture is Nmax(DoF) —
Constant Print Resolution and Constant Print Blur Spot Size*

APS-C Full-frame

Millions of pixels 24 (6000 x 4000) 36 (7350 x 4900)

Sensor dimensions (mm) 24 x 16 36 x 24

Sensor pixel pitch (µm) 4 4.9

Lens focal length (mm) 50 75

Horizontal field of view (º) 27 27

Final print length (inches @ ppi) 20 @ 300 ppi 24.5 @ 300 ppi

On-print blur spot size (mm) 0.2 0.2

Print magnification 21.167 17.286

Total on-sensor blur, ct (µm) 9.449 11.570

Optimal aperture, Nmax(DoF) 4.982 6.101

Diffraction blur, ca (µm) 6.686 8.188

Defocus blur, cd (µm) 6.686 8.188

Hyperfocal distance (m)** 75.1 112.6

* Calculations assume λ= 550 nm
** The APS-C camera will have greater depth of field when both cameras are used at their optimal apertures.
* Calculations assume λ= 550 nm
** The APS-C camera will have greater depth of field when both cameras are used at their optimal apertures.
* Calculations assume λ= 550 nm
** The APS-C camera will have greater depth of field when both cameras are used at their optimal apertures.

equal print size (at greater resolution and sharpness) that are possible with the full-frame camera 
must be “paid for” with decreased depth of field.17  This “cost” is avoided only if the nearest 
plane of the object field that is required to be sharp is at least 56.3 meters from the camera 
(112.6 / 2).  Note also that the on-print resolution with the full-frame system will now require 86 
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lp/mm on the sensor; so that the demands on the full-frame sensor + lens combination, while still 
not as great as those on the APS-C combination, are greater than for 24 MP full-frame system.

Table 4.  Camera Non-Equivalence When Optimal Aperture is Nmax(DoF) —
Constant Print Size*

Table 4.  Camera Non-Equivalence When Optimal Aperture is Nmax(DoF) —
Constant Print Size*

Table 4.  Camera Non-Equivalence When Optimal Aperture is Nmax(DoF) —
Constant Print Size*

APS-C Full-frame

Millions of pixels 24 (6000 x 4000) 36 (7350 x 4900)

Sensor dimensions (mm) 24 x 16 36 x 24

Sensor pixel pitch (µm) 4 4.9

Lens focal length (mm) 50 75

Horizontal field of view (º) 27 27

Final print length (inches @ ppi) 20 @ 300 ppi 20 @ 367.5 ppi

On-print blur spot size (mm) 0.2 0.163

Print magnification 21.167 14.111

Total on-sensor blur, ct (µm) 9.449 11.57

Optimal aperture, Nmax(DoF) 4.982 6.101

Diffraction blur, ca (µm) 6.686 8.188

Defocus blur, cd (µm) 6.686 8.188

Hyperfocal distance (m)** 75.1 112.6

* Calculations assume λ= 550 nm
** The APS-C camera will have greater depth of field when both cameras are used at their optimal apertures.
* Calculations assume λ= 550 nm
** The APS-C camera will have greater depth of field when both cameras are used at their optimal apertures.
* Calculations assume λ= 550 nm
** The APS-C camera will have greater depth of field when both cameras are used at their optimal apertures.

6.  A Caveat and Final Thoughts on Sensor Size
 At this point, it seems appropriate to ask:  how confident are we in this analysis of 
optimal aperture?  As I will describe below, a controlled test of the theory provides good 
evidence that the theoretical analysis is substantially correct, at least for one type of camera.  At 
the same time, it is worth remembering that in practice, calculated optimal apertures are likely to 
be approximate.  Although in several instances, I have calculated apertures to two or three 
decimal places, that was done only to avoid rounding errors in subsequent calculations.  It is a 
good thing that today’s cameras and lenses do not permit adjustments of aperture finer than 1/2 
or 1/3 f-stop, because our formulas for optimal aperture are almost certainly not any more precise 
than that, and may be less so.
 There are several reasons for caution.  First, the analysis treats defocus and diffraction 
blurs as circles with uniform intensity and sharp, clearly demarcated edges.  That is certainly not 
the case for diffraction blur.  It is not at all clear, a priori, how much of the Airy diffraction 
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pattern should be included in the calculation of diffraction blur.  The usual practice of taking the 
diameter of the central bright disk to the first minimum seems reasonable.  However, it is 
essentially arbitrary.  For example, lens aperture openings are not circular and may not be 
symmetrical.  Deviations from circularity might have considerable effects.  In the absence of any 
contrary evidence, I have used α = 1.0 for the value of the diffraction blur coefficient in sample 
calculations throughout this paper.  In the next paper in this series, I will describe an 
experimental estimate of its true value.  Secondly, I am unaware of any rigorous theoretical basis 
for calculating total blur as the root sum of squares of the equally-weighted defocus and 
diffraction blurs (Eq. 1(a)).  Peterson and Hansma use that equation without justification.  
Certainly, it has intuitive appeal.  For instance, if one blur circle is much larger than the other, it 
seems reasonable that the smaller source of blur will be “swamped” by the larger, and there will 
be little, if any, increase in total blur due to the smaller source.  Total blur, by Equation 1, 
behaves approximately that way, as we saw in Section 1.4.  Similarly, if two blur circles of equal 
size are laid directly on top of one another, we would probably not expect the total blur to be 
twice the individual blurs.  Again, Equation 1 conforms to expectation:  total blur in that case 
would be only √2 times the diameter of the individual blur spots.  Thus, Equation 1 exhibits 
properties that we intuitively feel are reasonable, but that is no guarantee that it is in any way 
exact.  That said, Hansma does provide data obtained from tests with view cameras that agree 
remarkably well with the predictions of the theory outlined above, specifically with respect to 
Nmin(Blur).
 Although the discussion of equivalent cameras indicates a possible advantage for cameras 
with smaller sensors (assuming shallow depth of field is not the goal), that possible advantage 
must be weighed against the less favorable noise characteristics of smaller sensors, and the 
greater resolution required for lenses on smaller sensors.  If images will be printed, the degree of  
magnification will affect acceptable total blur on the sensor.  For equal print sizes, larger format 
cameras will require less magnification, which will permit larger on-sensor blur spots.  In 
addition to making less stringent demands on lens + sensor resolving power, larger blur spots 
permit smaller optimal apertures (Eq. 8, Fig. 3).  Smaller optimal apertures are more likely to fall 
within the range for which lenses are well-corrected across their entire fields of view — usually 
f/4 or f/5.6 and smaller.  Optimal apertures larger than f/4 should probably be avoided unless a 
lens is known to perform well at those apertures on the camera being used.
 In the final analysis, optimal apertures given by the formulas here are most probably 
good starting points.  They may also be the “best” in most cases, but that remains to be verified 
by experience, with due consideration given to the resolving power of lenses and cameras.
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APPENDIX

To obtain the expressions for optimal aperture when:

     
cd (n) =

f (vn − v)
Nvn

= f ∂vn
Nvn     2

and

     
cd ( f ) =

f (v − vf )
Nvf

=
f ∂vf
Nvf     3

re-write Eq. 6, substituting cd(n)2 for cd(P)2 as the first term on the right-hand side:

    
ct
2 = f

vn

⎛
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⎞
⎠⎟

2
(∂vn )

2

N 2 + 2.44αλ
k

⎛
⎝⎜

⎞
⎠⎟
2

N 2

   9

Then Nmin(Blur) is obtained by differentiating ct2 with respect to N, setting the result to zero and 
solving for N:

    

dct
2

dN
= −2 f
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Nmin(Blur ) =

f
vn

⎛
⎝⎜

⎞
⎠⎟

∂vn( )k
2.44αλ

≈
∂vn( )k
2.44αλ

  10

Note that if ∂vn = 1/2 ∂v, Eq. 10 and 7 give identical results.  The derivation in the case where 
defocus blur is cd(f) is omitted.  The expression for Nmin(Blur) is the same as Eq. 10, substituting vf 
for vn, and ∂vf for ∂vn.

    

Nmin(Blur ) =
f
v f

⎛

⎝⎜
⎞

⎠⎟
∂vf( )k
2.44αλ

≈
∂vf( )k
2.44αλ

  11
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Note that these equations assume that ∂vf and ∂vn are expressed in microns.

In the case of Nmax(DoF), Eq. 9 is first solved for (∂vn)2 and then differentiated with respect to N.  
First, let (ƒ / vn) = b.  Then:

    
b2 (∂vn )

2

N 2 = ct
2 − 2.44αλ

k
⎛
⎝⎜

⎞
⎠⎟
2

N 2

from which

    
(∂vn )

2 = ct
2

b2
N 2 − 2.44αλ

bk
⎛
⎝⎜

⎞
⎠⎟
2

N 4

Therefore:

    

d ∂vn( )2
dN

= 2 ct
2

b2
N − 4 2.44αλ

bk
⎛
⎝⎜

⎞
⎠⎟
2

N 3

   

Setting this derivative to zero and dividing by N, we have:

    
2 ct

2

b2
= 4 2.44αλ

bk
⎛
⎝⎜

⎞
⎠⎟
2

N 2

     

from which:

    
Nmax(DoF ) = 0.29

ctk
αλ      12

Which is exactly the same as Eq. 8.  It follows that substituting cd(f) for cd(n) in Eq. 9 will also 
lead to the same result for Nmax(DoF).
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